Preparation and evaluation of a thermosensitive liposomal hydrogel for sustained delivery of danofloxacin using mesoporous silica nanoparticles

Authors

  • Ali Rassouli Department of Pharmacology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
  • Hamid Akbari Javar Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
  • Katayoun Kiani PhD student, Department of Pharmacology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
  • Pegah Khosraviyan Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
  • Taghi Zahraee Salehi Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
Abstract:

Background: Sustained release delivery system can reduce the dosage frequency and maintain the therapeutic level of drugs for a longer time. Biodegradable, biocompatible and thermosensitive chitosan-beta-glycerophosphate (C-GP) solutions can solidify at body temperature and maintain their physical integrity for a longer duration. OBJECTIVES: To develop a novel delivery system based on the integration of liposomes in hydrogel using mesoporous silica nanoparticles (MSNs) for sustained release of danofloxacin in farm animals. METHODS: The MSNs were prepared using N-cetyltrimethylammonium bromide and tetraethylortho silica. The liposomes were prepared by thin film hydration method. C-GP solution containing danofloxacin-loaded MSN liposomes underwent different in-vitro tests, including evaluation of the entrapment efficiency, gelation time, morphology, drug release pattern as well as antimicrobial activities against S. aureus and E. coli. RESULTS: The mean pore size of MSNs was 2.8 nm and the mean MSN entrapment efficiency was 45%. Kinetics of danofloxacin release from liposomal hydrogel followed the Higuchi’s model. This formulation was capable of sustaining the danofloxacin release for more than 96 h. The FTIR studies showed that there were no interactions between danofloxacin and hydrogel  excipients. Scanning electron microscopy (SEM) showed that the formed gel had a continuous texture, while the swelled gel in the phosphate buffer had a porous structure. Microbiological tests revealed a high antibacterial activity for lipomosal hydrogel of danofloxacin-loaded MSN comparable with danofloxacin solution. CONCLUSIONS: The liposomal hydrogel solidified at body temperature, effectively sustained the release of danofloxacin and showed in vitro antibacterial effects.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

preparation and evaluation of a thermosensitive liposomal hydrogel for sustained delivery of danofloxacin using mesoporous silica nanoparticles

background: sustained release delivery system can reduce the dosage frequency and maintain the therapeutic level of drugs for a longer time. biodegradable, biocompatible and thermosensitive chitosan-beta-glycerophosphate (c-gp) solutions can solidify at body temperature and maintain their physical integrity for a longer duration. objectives: to develop a novel delivery system based on the integ...

full text

Preparation and Characterization of Rifampin Loaded Mesoporous Silica Nanoparticles as a Potential System for Pulmonary Drug Delivery

The goal of this research is to determine the feasibility of loading rifampin into mesoporous silica nanoparticles. Rifampin was selected as a model lipophilic molecule since it is a well-documented and much used anti tuberculosis drug. The mesoporous silica nanoparticles were prepared by using Tetraethyl ortho silicate and cetyltrimethyl ammonium bromide (as surfactant); The prepared nanoparti...

full text

Preparation and Characterization of Rifampin Loaded Mesoporous Silica Nanoparticles as a Potential System for Pulmonary Drug Delivery

The goal of this research is to determine the feasibility of loading rifampin into mesoporous silica nanoparticles. Rifampin was selected as a model lipophilic molecule since it is a well-documented and much used anti tuberculosis drug. The mesoporous silica nanoparticles were prepared by using Tetraethyl ortho silicate and cetyltrimethyl ammonium bromide (as surfactant); The prepared nanoparti...

full text

Preparation and in vitro evaluation of a novel chitosan-based hydrogel for injectable delivery of enrofloxacin

BACKGROUND: The development of injectable sustained-release products are of great interest to veterinary pharmaceuticals and animal health business. Recently, great attention has been paid to in situ gel-forming chitosan/beta-glycerophosphate (chitosan/β-GP) solutions due to their good biodegradability and thermosensitivity. OBJECTIVES: The general aim of this study was to prepare a novel in si...

full text

development of different optical methods for determination of glucose using cadmium telluride quantum dots and silver nanoparticles

a simple, rapid and low-cost scanner spectroscopy method for the glucose determination by utilizing glucose oxidase and cdte/tga quantum dots as chromoionophore has been described. the detection was based on the combination of the glucose enzymatic reaction and the quenching effect of h2o2 on the cdte quantum dots (qds) photoluminescence.in this study glucose was determined by utilizing glucose...

Study of Mesoporous Silica Nanoparticles as Nanocarriers for Sustained Release of Curcumin

Curcumin (CUR) is a hydrophobic molecule and beneficial antioxidant with known anticancer property. The bioavailability of curcumin is low because of its hydrophobic structure. Mesoporous silica nanoparticles (MSN) loaded by CUR were used as nanocarriers for sustained release of CUR in four different media such as simulated gastric,intestinal, colon and body fluids (SGF, SIF, SCF, and SBF, ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 4

pages  295- 306

publication date 2016-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023